The impact of altered gravity and vibration on endothelial cells during a parabolic flight.

نویسندگان

  • Markus Wehland
  • Xiao Ma
  • Markus Braun
  • Jens Hauslage
  • Ruth Hemmersbach
  • Johann Bauer
  • Jirka Grosse
  • Manfred Infanger
  • Daniela Grimm
چکیده

BACKGROUND Endothelial cells (EC) cultured under altered gravity conditions show a cytoskeletal disorganization and differential gene expression (short-term effects), as well as apoptosis in adherently growing EC or formation of tubular 3D structures (long-term effects). METHODS Investigating short-term effects of real microgravity, we exposed EC to parabolic flight maneuvers and analysed them on both protein and transcriptional level. The effects of hypergravity and vibration were studied separately. RESULTS Pan-actin and tubulin proteins were elevated by vibration and down-regulated by hypergravity. β-Actin was reduced by vibration. Moesin protein was reduced by both vibration and hypergravity, ezrin potein was strongly elevated under vibration. Gene expression of ACTB, CCND1, CDC6, CDKN1A, VEGFA, FLK-1, EZR, ITBG1, OPN, CASP3, CASP8, ANXA2, and BIRC5 was reduced under vibration. With the exception of CCNA2, CCND1, MSN, RDX, OPN, BIRC5, and ACTB all investigated genes were downregulated by hypergravity. After one parabola (P) CCNA2, CCND1, CDC6, CDKN1A, EZR, MSN, OPN, VEGFA, CASP3, CASP8, ANXA1, ANXA2, and BIRC5 were up-, while FLK1 was downregulated. EZR, MSN, OPN, ANXA2, and BIRC5 were upregulated after 31P. CONCLUSIONS Genes of the cytoskeleton, angiogenesis, extracellular matrix, apoptosis, and cell cycle regulation were affected by parabolic flight maneuvers. We show that the microgravity stimulus is stronger than hypergravity/vibration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of ICAM-1 in Cells of the Monocyte/Macrophage System in Microgravity

Cells of the immune system are highly sensitive to altered gravity, and the monocyte as well as the macrophage function is proven to be impaired under microgravity conditions. In our study, we investigated the surface expression of ICAM-1 protein and expression of ICAM-1 mRNA in cells of the monocyte/macrophage system in microgravity during clinostat, parabolic flight, sounding rocket, and orbi...

متن کامل

Signal transduction in primary human T lymphocytes in altered gravity during parabolic flight and clinostat experiments.

BACKGROUND/AIMS Several limiting factors for human health and performance in microgravity have been clearly identified arising from the immune system, and substantial research activities are required in order to provide the basic information for appropriate integrated risk management. The gravity-sensitive nature of cells of the immune system renders them an ideal biological model in search for...

متن کامل

Gravity-dependent changes in bioconvection of Tetrahymena and Chlamydomonas during parabolic flight: increases in wave number induced by pre- and post-parabola hypergravity.

Bioconvection emerges in a dense suspension of swimming protists as a consequence of their negative-gravitactic upward migration and later settling as a blob of density greater than that of water. Thus, gravity is an important parameter governing bioconvective pattern formation. However, inconsistencies are found in previous studies dealing with the response of bioconvection patterns to increas...

متن کامل

A gravity loading countermeasure skinsuit

Despite the use of several countermeasures, significant physiological deconditioning still occurs during long duration spaceflight. Bone loss – primarily due to the absence of loading in microgravity – is perhaps the greatest challenge to resolve. This paper describes a conceptual Gravity Loading Countermeasure Skinsuit (GLCS) that induces loading on the body to mimic standing and – when integr...

متن کامل

The Density-Driven Nanofluid Convection in an Anisotropic Porous Medium Layer with Rotation and Variable Gravity Field: A Numerical Investigation

In this study, a numerical examination of the significance of rotation and changeable gravitational field on the start of nanofluid convective movement in an anisotropic porous medium layer is shown. A model that accounts for the impact of Brownian diffusion and thermophoresis is used for nanofluid, while Darcy’s law is taken for the porous medium. The porous layer is subjected to uniform rotat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 31 2-3  شماره 

صفحات  -

تاریخ انتشار 2013